
SK 20 GD 065

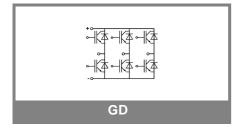
SEMITOP® 2

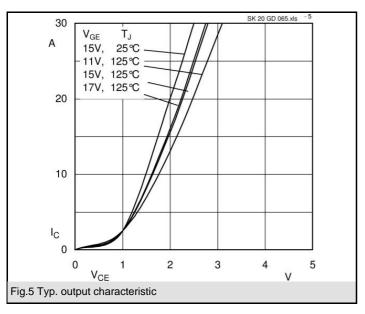
IGBT Module

SK 20 GD 065

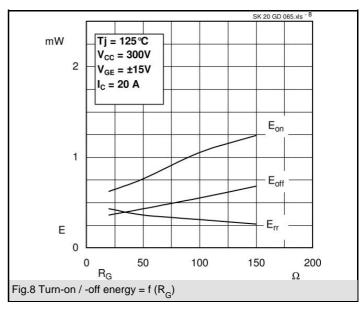
Preliminary Data

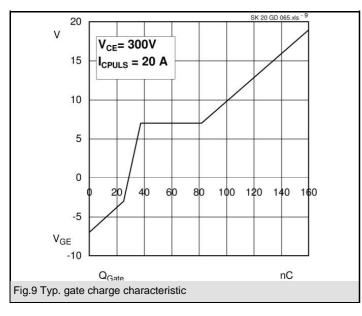
Features

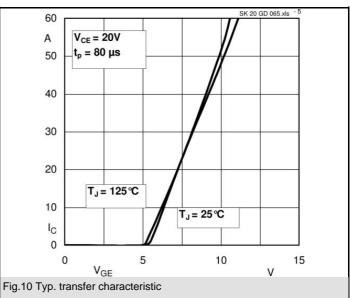

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, Ultrafast NPT technology IGBT
- CAL technology FWD
- · High short circuit capability
- Low tail current with low temperature dependence

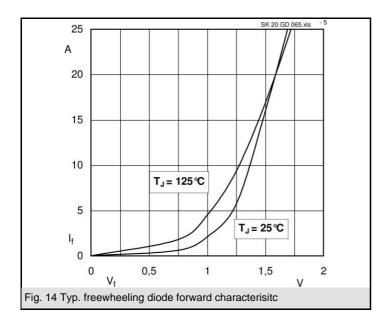

Typical Applications

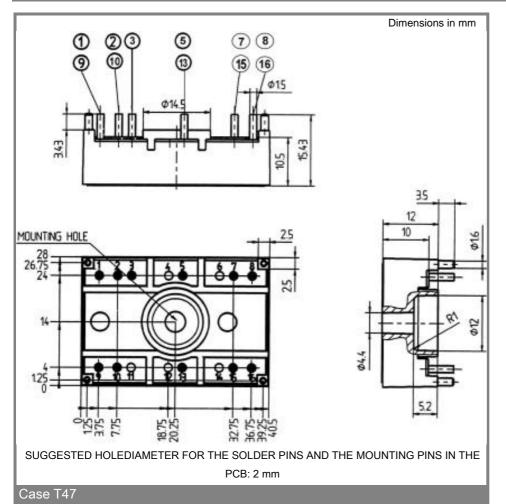
- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

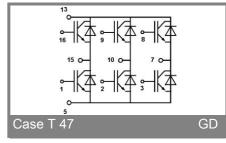

Absolute	Maximum Ratings	T_s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
V_{GES}		± 20	V					
I _C	$T_s = 25 (80) ^{\circ}C;$	24 (17)	Α					
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	48 (34)	Α					
T_j		- 40 + 150	°C					
Inverse/Freewheeling CAL diode								
I _F	$T_s = 25 (80) ^{\circ}C;$	22 (15)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	44 (30)	Α					
T_j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V_{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					


Characte	rietice	T. = 25	T_s = 25 °C, unless otherwise specified				
Characteristics							
Symbol	Conditions	miı	ո. typ.	max.	Units		
IGBT							
V _{CE(sat)}	$I_C = 20 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$		2 (2,2)		V		
V _{GE(th)}	$V_{CE} = V_{GE}$; $I_{C} = 0,0005 A$	3	4	5	V		
C _{ies}	$V_{CE} = 0 \text{ V; } V_{GE} = 0 \text{ V; } 1 \text{ MHz}$		1,2		nF		
$R_{th(j-s)}$	per IGBT			1,7	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		36		ns		
t _r	$I_C = 20 \text{ A}, T_j = 125 ^{\circ}\text{C}$		30		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 30 \Omega$		250		ns		
t _f			60		ns		
$E_{on} + E_{off}$	Inductive load		1,04		mJ		
Inverse/F	reewheeling CAL diode						
$V_F = V_{EC}$	I _F = 20 A; T _i = 25 (125) °C	1	1,6 (1,9)	1,9 (1,9)	V		
V _(TO)	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,1 (1)	V		
r _T	T _j = 25 (125) °C		30 (33)	40 (47)	mΩ		
$R_{th(j-s)}$				1,7	K/W		
	under following conditions:						
I _{RRM}	$I_F = 20 \text{ A}; V_R = 300 \text{ V}$		27		Α		
Q_{rr}	$dI_F/dt = 1350 A/\mu s$		2,3		μC		
E _{off}	$V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		0,4		mJ		
Mechanic	cal data						
M1	mounting torque			2	Nm		
w			21		g		
Case	SEMITOP® 2		T 47				









SK 20 GD 065

SK 20 GD 065

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.